第43章 这题有难度,但也还好,解法有二…(第 3/4 页)
“粉笔就不用了,我还是直接口述吧!这样能节省不少时间。”
啧啧!
林北当真是语不惊人死不休。
明明余化田都给他粉笔,让他慢慢想了,结果他却有粉笔而不用。
甚至。
他还想节省时间?
不过更惊人的还在后边。
只见林北一语刚落,又立马开口,“嗯,这题的解法貌似有两种。”
“其中之一,是运用分参+同构+指数切线放缩+隐零点等知识去解。”
“题干为x(e^x-a)-2lnx+2ln2-2≥0,很明显这是在x>0时的成立。”
“先乘开分参,变成xe^x-2lnx+2ln2-2≥ax,x>0。”
“则a≤(xe^x-2lnx+2ln2-2)/x,x>0。”
“令g(x)=(xe^x-2lnx+2ln2-2)/x,x>0。”
“再进行一个同构。”
“则g(x)=(e^(x+lnx)-2lnx+2ln2-2)/x。”
“再右边分子分母同除一个2,得g(x)=(e^(x+lnx-ln2)-lnx+ln2-1)/(x/2)=(e^(x+lnx-ln2)-(x+lnx-ln2)-1+x)/(x/2)。”
“根据线性放缩……”
“f(x)=e^x-x-1≥0,该函数恒成立,当且仅当x=0时取等于号。”
“所以……”
“g(x)=(f(x+lnx-ln2)+x)/(x/2)≥(0+x)/(x/2)=2。”
“然后验证取等条件。”
“令h(x)=x+lnx-ln2,x>0。”
“h`(x)=1+1/x>0,对x>0恒成立,即h(x)在(1,+∞)为单调递增。”
“而h(1)=1-ln2>0。”
“h(1/2)=1/2-2ln2<0。”
“根据零点存在性定理,这中间肯定存在唯一的x0属于(1/2,1)使得h(x0)=0。”
“也就是x0+lnx0-ln2=0。”
“所以x=x0时,取等。”
-->>(第 3/4 页)(本章未完,请点击下一页继续阅读)