第442章 或许这就是巧合吧(补更)(第 3/4 页)
不得不说,标准猜想的证明,大概算是代数几何里最要紧的事了。
但是,标准猜想的证明难度,却又是顶级的。
真要比一下的话,从陈舟的角度来看,标准猜想的难度,得比哥猜高一个等级。
收回思绪,陈舟回到眼前的草稿纸上,拿起笔,开始写到:
【关于motivic l 函数和自守 l 函数,每一个motivic l函数,都是由motivic给出的。
对于这些函数,很容易验证其满足黎曼ζ函数的第一个条件,但是第二个条件,还无法证明一般的情况。
一个已知例子是,有理数上椭圆曲线的情形,也就是费马大定理的证明的一个推论(谷山-志村猜想)。】
陈舟记得在文献上看到过,这个谷山-志村猜想的完整情形,是在2001年,由怀尔斯教授的几位学生证明。
不得不说,怀尔斯教授的学生在面对费马大定理的推论时,都有buff加成。
陈舟在谷山-志村猜想旁边,做了个标记,便继续写到:
【对于几乎所有l函数,第三个条件,也就是黎曼假设,都是未知的。
唯一的例外是motive在有限域的情形,此时l函数满足黎曼假设的条件,正是韦伊猜想。】
陈舟又在韦伊猜想旁边,写下了“德利涅”三个字。
虽然看似这里面的问题,被解决了不少。
但实际上,尚未解决的问题,才是真正的庞大。
对于对于motivic l 函数的特殊值的问题,现在普遍的研究认为,需要motive的一个推广。
这是一个更加庞大,也更加遥远的梦想。
数学家们把它称为mixed motive。
它的存在能够推导出一系列及其漂亮的等式,推广欧拉对于黎曼ζ的公式。
著名的贝林森猜想,七大千禧难题之一的bsd猜想等,都属于可以被推导之列。
从某种程度来说,mixed motive可以和标准猜想相媲美,甚至于超过了标准猜想。
因为目前的数学界,还不知道如何去构造它罢了。
当然,目前的数学界虽然无法构造mixed motive,却能够构造它的一个弱化变形,也就是导出范畴。
俄罗斯数学家弗拉基米尔·沃埃沃德斯基,就是因为给出了这样一个构造,从而获得了2002年的菲尔兹奖。
-->>(第 3/4 页)(本章未完,请点击下一页继续阅读)