第167章 三十四分钟,数学卷搞定!(第 2/4 页)
最正规的做法,便是用放缩法比较a,b和c的大小,运算量虽大点,可只要对各种放缩公式足够熟悉,便问题不大。
而走点儿捷径的话,那就是泰勒公式,不过该公式高中不学,所以林北也不知道,自然不会使用这个公式。
但他也没有用放缩法,直接在心里画出三个图形,在很接近1时看看三者间的切线斜率,然后估测比较就行了。
当然,这方法有投机取巧的成分,且答案也不一定准确。
毕竟连个过程都没得。
放在填空解答,肯定是凉凉无疑。
可这是选择题,并不要求具体过程,而只需要答案对了就行不是么?
做选择题,该取巧的时候是可以取巧的,可以猜,可以估测,可以画图,甚至可用排除法,讲究一个小题小做巧做,注重思想方法,达到既快又准,而不是反过来,搞出小题大做,纠缠半天才得出答案。
即便最后答案对了,可时间耗费过多,精力消耗过大,肯定得不偿失。
至于第二题,答案是a。
林北耗费时间长了点,接近一分钟。
毕竟这一题,确实没得取巧的办法,只能在心里通过运算。
不过这运算,并不复杂。
无非是……
【因为令x=0,得y=-2,令y=0,得x=-2,所以a(-2,0),b(0,-2),iab|=(√4+4)反=2√2反。】
【又因点p在圆(x-2)^2+y^2=2,所以设p(2+√2反cosθ,√2反sinθ),所以点p到直线x+y+2=0的距离d=……】
【所以△abp面积的取值范围是:[12x2√2x√2,12x2√2x3√2]=[2,6]。
【故选a。】
没错,就是如此简单。
只需要搞清楚了直线与圆的位置关系,这题其实跟送分也没啥区别。
且上边这只是解法一,稍微复杂一点,除此之外还有解法二,可用极大极小值的方法,直接将取值范围给算出来。
而那种方法,运算更加简单。
所以一分钟,真的是足够了。
如果不是林北想要控制一下自己速度,防止这一道美味佳肴被吃太快,而无法充分享受到的话,估计半分钟便足矣。
至于第三题就无需多说了。
曲线方程问题,对一般人来说那是难如登天,往往是云里雾里不知就里,即便能做,也要耗费不知多久时间。
可对林北来说,也就那样。
即便这道题有些许多复杂,可他也就耗费不到一分钟,便搞定了d选项。
就这样……
他一直保持着不到一分钟,大概四五十秒一道题的速度,而花了仅十分钟,便做完了12道选择题,而来到填空题。
-->>(第 2/4 页)(本章未完,请点击下一页继续阅读)