字体
关灯
   存书签 书架管理 返回目录
    第495章 幻数据压缩算法猜想1(第 2/3 页)

    示例:取x=15;y=7;

    15^8=2,562,890,625

    15^7=170,859,375

    当然了,因为作者并没有使用16^19-16^18,然后再把结果进行开15次方,然后再进行筛查,可能就会导致第二次和第一次的相关度不高。

    一个二进制数据根据位数,可以表达多少数值?

    1位二进制,有两种可能,1和0。

    2位二进制,有四种可能,00,01,10,11。

    16位二进制,有2的16次方种可能,然而一个数据本身使用这么多位是一种浪费。

    也就是说,一个16位二进制所表达的数,是一个固定数,是大于或等于0,小于2的16次方+1。

    就比如说,一个1zb大小的数据,只要其本身是固定的,那么就注定大于或等于0,然后小于2的多少次方来着???+1。

    表达固定的数,并不一定需要使用到很长的长度。

    比如2的987654321次方,可以是一个很大的数,其换算成二进制,会占用多大的存储空间?然后是不是可以逆推为算术内容:2的987654321次方?

    问题就是,并非所有的数,都是规律数,都可以使用a的b次方+c乘以d+e阶乘方式正好等于该数,也就导致往往只能采取使用比大小的方式,无限近似,大于某个最接近该数的小数,小于某个最接近该数的大数。

    比如说,想要记录一个5,那么在只能使用素数的表达方式时,就可以记录为该数大于3,小于7。

    使用大于和小于之后,就可以获得一个数据范围,该范围内可能包含有有数的可能性,接下来的方法,就是把这个可能性减少,比如说(3+7)/5=2,则表示这个数正好处于大于和小于的中间值,比如说(3+7)/4=2.5,则表示这个数正好大于大于和小于的中间值;以此类推;

    设定一个数为未知数b,a大于b小于c。

    -->>(第 2/3 页)(本章未完,请点击下一页继续阅读)
上一页 目录 下一页
最近更新 骗了康熙 谍影:命令与征服 我在现代留过学 活埋大清朝 三国模拟器:这个马谡太稳健了 某霍格沃茨的魔文教授 大清要完 晋末长剑 我的谍战岁月 机战:先驱者的归来 不是吧君子也防 大唐腾飞之路 寒门崛起 万历明君 红楼琏二爷 大明烟火 机战之无限边境 说好的文弱谋士,你一人战三英? 蜀汉之庄稼汉 北齐怪谈
最多阅读 小老板 诸事皆宜百无禁忌 希腊神话 折尽春风 红警军团在废土 全世界的醋都被你吃了 三国军神 遮天这个霸体太稳健 斗罗之我的武魂是纸牌 1717新美洲帝国 改造大唐从养猪开始 重生之民国元帅 大清要完 洪荒之离线挂机十亿年 三国之蜀汉中兴 民国之文豪崛起 在暴戾的他怀里撒个娇 北宋穿越指南 酒仙斗罗 绝世唐门之黯金圣龙