字体
关灯
   存书签 书架管理 返回目录
    第六十三章 省赛开考!哈密顿图!(第 3/3 页)

    哈密顿这个名字,估计全国九成九的高中生都没留意过。

    哈密顿是十八世纪的英国著名数学家,当年他提出一个名为“环游世界”的游戏,用一个正十二面体的二十个顶点代表二十个大城市,要求沿着棱,从一个城市出发,只经过每个城市一次,然后回到出发点,这就是著名的“哈密顿问题”。

    后来数学界将“经过图上各顶点一次并且仅仅一次的圈”称之为“哈密顿圈”,一个图如果包含哈密顿圈,那这个图就可以被称为“哈密顿图”。

    从表面上来看,这个哈密顿问题似乎与欧拉的哥尼斯堡七桥问题(哥尼斯堡七桥问题是指,河中有两个岛,河上有七座桥连接这两个岛及河的两岸,请问能否通过每座桥一次且仅一次。它也被称为“一笔画”问题)非常相似,但两者有着本质的区别。

    哥尼斯堡七桥问题已被欧拉自己解决了,并由此开创了数学的新分支——“图论”。

    哈密顿问题却迄今为止都未曾解决,一百多年来无数一流的数学家费尽心思,也没找到判断它的充分必要条件,只是提出了一些已被证实的必要条件和充分条件,应用到不同的场合。

    这道题目难就难在不但要求解题人了解哈密顿图的特点和那些已被证实的必要条件和充分条件,更要能灵活运用。

    秦克一看到这题目,就知道宁青筠答不出来——因为时间有限,有关哈密顿图他只是给宁青筠讲解过两道例题,并不算深入,以宁青筠对哈密顿图的理解,不可能答得出来。

    不只是宁青筠,估计整个考场,除了他也没第二个人能答出来。

    秦克揉揉有点发胀的太阳穴,沉思了三分多钟,才开始动笔:

    “解:首先每个点的度至少为3,不然存在一点a仅连出至多两边,则把其中一边却掉后,剩下的a点必不在某个圈上,这与条件不符,因此可以得出,n≥3……”

    “当n=4时……”

    “……”

    “当n=10时,条件才成立,所以本题的答案为10,具体图示如下:”

    秦克画了一个正五边形,中间是个“一笔画”的五角星形,五星形的各个顶点再与包围它的五边形顶点相连。

    这就是n=10的时候,最符合题意的图,任意去掉一点及与之相连的边,剩下的图为哈密顿图。

    解答过程写了整整大半页纸,几乎将答题区域写满。
上一页 目录 下一章
最近更新 刚准备高考,离婚逆袭系统来了 华娱从男模开始 我在直播间窥探天机 重燃青葱时代 港片:你洪兴仔,慈善大王什么鬼 讨逆 盖世神医 舔狗反派只想苟,女主不按套路走! 牧者密续 那年花开1981 1987我的年代 修罗剑神 混沌天帝诀 1979黄金时代 大国军垦 至尊战王 巅峰学霸 女总裁的全能兵王 国潮1980 超级修真弃少
最多阅读 攻玉 刺青 好运时间 上瘾 慢性沉迷 仵作惊华 雪意和五点钟 白色口哨 理我一下 痛仰 攻略病娇男配的正确方法 漂亮朋友 甜妻 洞房前还有遗言吗 敬山水 杀死那个白月光 黑天 俗人回档 穿书后每天都在被迫撒娇 顶级诱捕公式