第两百八十三章(第 3/4 页)
这是相关的ui界面。包括标准设计、数据字典定义、质量规则设置,以及质量报告。
另一个非常重要的是空间数据的融合。
对于空间数据融合其实有很多的办法。如果不同业务系统中,对于同一个空间对象通过id能关联上,那是最好。不过可惜的是原有业务系统都是独立建设的,往往承担的部门还不一样,一般都没有建立起类似于身份证的id关联。
另一个办法是看是否有统一的空间小区,例如同一个基站定义的通讯小区,同一个路口定义的交通小区,院落构成的住在小区等等。这样空间对象也能联系到一起。这有点类似于新型测绘中地理实体的概念。
最后就是通过时空关系的判断,例如空间范围的包含关系,时空轨迹上的联系,例如公交路线涉及到哪些公交站,以及空间网络的通达性等等。
上述是空间数据融合的一些具体办法,也欢迎大家一起集思广益。
在数据开发上,除了sql,还需要支持以拖拉拽方式提供的gp可视化编排的方法。这个gis引擎中也都具备。不过,我们提供了多gis引擎的算子混编,主要是集各家之所长。另外还支持字段级的数据血缘,这样在指标计算后若存在问题,能快速定位问题的根源所在。
我们再来看一下数据资产。
对于数据资产,必须从全流程、分不同角色来看待资产的利用和增值,并不是一个角色从头干到尾,大家的岗位不同、职责不同,分工合作才能促进资产的增值。
数据资产的供给方把原始的数据一步步开发建模,之后变成资产目录供后续使用;资产的运营方负责对资产进行良好的管理,促进资产的增值。这里就包括上架资产,宣传推广,收集反馈等;资产的使用方则负责使用数据资产,并做出评价。
这样三个角色相互关联,通过接力,构成了数据资产的全生命周期管理。
这是数据资产运营管理的几个截图。
这是资产的门户截图。
最后,我们来看看空间数据中台的整体架构图。
最下面是不同的数据来源,然后是基于飞天或者轻量化的数据底座,实现数据的存储和计算能力。再上面是依托于dataq开发的空间数据中台,包括刚才提到的七个模块。再上面是依托于datav的前端能力,包括gis前端和应用场景的开发,最后是对多种类型终端的支持,以及各类应用场景的实现。
基于之前的信息我们回顾一下,针对信息整合系统所面临的挑战,空间数据中台是如何应对的。
首先,空间数据中台是一个开放的系统,能汇聚各类数据,支持灵活的开放方式。
-->>(第 3/4 页)(本章未完,请点击下一页继续阅读)