第69章 提前到来的毕业考试(第 2/4 页)
李默神情自如的笑了一下,说道:“这真是巧了,我正准备报考吴教授的研究生呢,也许以后你就是我的师兄了,请多多关照。”
周明谦虚的说:“你的大名,早就传遍了整个燕大,吴教授在我们面前没少夸赞你是难得一见的数学天才。”
“过奖,过奖。”
“咳,咳”旁边的教务处老师看到二人竟然拉起了家常,出言打断,“由于时间比较紧,我们这就开始考试吧,李默同学。”
“今天上午预计的是3门科目的考试,《数学分析》,《高等代数》和《微积分方程》。由于是提前考试,所以不按照正常的考试时间进行。”
“中午12点之前,你把3份完成的试卷交给我就行。”说着他就把3份试卷发了下来。
第一份试卷是《数学分析》,
1.叶形线x=2t-t?,y=2t?-t?,0≤t≤2,求此曲线所围的图形面积。
这也太简单了,李默稍加思索就得出了答案,他在试卷上唰唰写道:
|y=tx,t00.511.52x00.7510.750y00.37511.1250,面积a=∫(2t-t^41022)(2-2t)dt=∫(4t-6t^2+2t^3)dt=(2t^2-2t^3+t^4/2)|=1/2.
2.u=(x/y)^(1/z)在(1,1,1)处的所有偏导数.
这题也难不倒他,不到2秒,李默就推导出了答案:
u=u(x,y,z)?u/?x=[(x/y)^5261(1/z)]/(zx)=u/(zx)?u/?y=-[(x/y)^(1/z)]/(zy)=-u/(zy)?u/?z=-[(x/y)^(1/z)](1/z?)ln(x/y)=-u[ln(x/y)]/z?u=(x/y)^(1/z)在(1,41021,1)1653u=u(1,1,1)=1?u/?x=1,?u/?y=-1,?u/?z=0
3.求u=ln(sin(xy))的全微分
1秒,只用了1秒,李默直接写下了答案。
du=(?u/?x)dx+(?u/?y)dy?u/?x=y[cos(xy)]/[sin(xy)]?u/?y=x[cos(xy)]/[sin(xy)]du=(ydx+xdy)[cos(xy)]/[sin(xy)]
..........................
.........................
-->>(第 2/4 页)(本章未完,请点击下一页继续阅读)