第322章 NP完全问题的启示?(第 3/4 页)
每个难题的奖都是一百万美元!
七大千禧难题分别是np完全问题(p/np问题)、霍奇猜想、庞加莱猜想、黎曼猜想、杨—米尔斯规范场存在性和质量间隔假设(规范场理论)、ns方程解的存在性与光滑性以及bsd猜想(贝赫和斯维讷通-戴尔猜想)。
目前为止,只有庞加莱猜想被俄罗斯数学家佩雷尔曼所解决。
“对np完全问题产生启示吗?”
相比较来说,这11件大事中,这件是令陈舟最感兴趣的。
毕竟是和千禧难题产生关系的研究。
虽然对很多人来说,可能11件大事中的最后一件,也就是陈舟的事件,更加吸引人的眼球。
关于np完全问题,举个简单的例子。
在某个晚上,你去参加了一个宴会。由于宴会过于盛大,你感到了局促不安,这时你会想知道整个宴会厅里,是否有你认识的人。
恰好这时,宴会的主人向你提议说,你一定认识那位正在甜点盘附近吃冰淇淋的女士。
几乎不费多少时间,你就能向那里扫视,并且发现宴会的主人是正确的。
然而,如果没有这样的暗示,你就必须环顾整个宴会厅,一个个地审视每一个人,看是否有你认识的人。
这其实就像一件事,如果一个人告诉你,12717421可以写成两个较小的数的乘积。
你肯定会迟疑,并且猜想他说的对不对。
但是,如果他告诉你,12717421可以分解为3607乘上3803,那你很快就能得到答案,并且验证这是对的。
这就是np完全问题的简单例子。
至于np完全问题这个猜想,指的则是既然所有的完全多项式非确定性问题,都可以转换为一类叫做满足性问题的逻辑运算问题。
-->>(第 3/4 页)(本章未完,请点击下一页继续阅读)