第250章 时间很紧(第 3/4 页)
这也就给陈舟提供了更多的选择。
如果是9组原始数据,那可能这个六三开,就是陈舟六,沈靖三了。
从p型掺杂入手。
对硼的掺杂浓度、衬底晶面等影响硼掺杂金刚石制备的因素,进行数据的统计分析。
因为9组数据的硼源选择都是b(ch3)3,所以这次的实验倒是不需要考虑硼源的影响了。
陈舟完全的投入到了紧张的数据分析之中。
也许是知道时间很紧的原因,陈舟手上的动作,也比平时加快了不少。
无论是敲击键盘的速度,还是拿笔在草稿纸上进行记录。
陈舟都尽量的在追赶着地球转动的步伐。
p型掺杂的实验数据搞定之后,陈舟开始处理n型掺杂实验的数据。
n型掺杂,也就是磷掺杂。
除了考虑和p型掺杂一样的磷的掺杂浓度、衬底晶面、温度这些基本的影响因素。
还有一点需要考虑。
那就是磷掺杂金刚石的电子散射机制,对迁移效率,同样有影响。
金刚石半导体中的电子散射机制,与内部的声学声子、谷间声子、离子杂质和中性杂质有关。
在室温下,当磷的掺杂浓度超过1x10^18/cm3时,杂质散射或缺陷态散射其主要作用。
而当磷的掺杂浓度低于这个浓度时,杂质电离散射变为声学声子散射。
当然,这种简单的判别并不充分。
因为磷掺杂自身也会引入其他散射。
像磷—碳共价键的键长失配导致的内应力引起的散射。
另外,在不同的温度区间,主要的散射机制也不同。
低温条件下,声学声子散射为主要散射机制。
而高温时,电子则受到声学声子散射和谷间声子散射的共同作用。
好在先前陈舟已经跟彭飞确认了磷的掺杂浓度是在4x10^15/cm3~2x10^15/cm3区间内依次选取的。
-->>(第 3/4 页)(本章未完,请点击下一页继续阅读)