第三百四十八章 彼得尔(第 2/4 页)
想要证明bertrand 假设,就必须证明几个辅助命题。
引理一:【引理 1:设 n 为一自然数, p 为一素数,则能整除 n!的 p 的最高幂次为: s =Σi≥1floor(n/pi)(式中 floor(x)为不大于 x 的最大整数)】
这里,需要将从 1 到 n 的所有(n 个)自然数排列在一条直线上,在每个数字上叠放一列 si 个记号,显然记号的总数是 s。
关系式 s =Σ1≤i≤n si 表示的是先计算各列的记号数(即 si)再求和,由此得到的关系,便是引理1。
引理二:【设 n 为自然数, p 为素数,则Πp≤n p < 4n】
用数学归纳法。 n = 1 和 n = 2 时引理显然成立。假设引理对 n < n 成立(n > 2),我们来证明 n = n 的情形。
如果 n 为偶数,则Πp≤n p =Πp≤n-1 p,引理显然成立。
如果 n 为奇数,设 n = 2m + 1 (m ≥ 1)。注意到所有 m + 1 < p ≤ 2m + 1 的素数都是组合数(2m+1)!/m!(m+1)!的因子,另一方面组合数(2m+1)!/m!(m+1)!在二项式展开(1+1)2m+1 中出现两次,因而(2m+1)!/m!(m+1)!≤(1+1)2m+1 / 2 = 4m.
如此,便能……
程诺思路顺畅,几乎没费多大功夫,便用自己的方法将这两个辅助命题证明出来。
当然,这不过是才走完第一步而已。
按照切比雪夫的思路,后面还需要通过这两个定理引入到bertrand 假设的证明步骤中去。
切比雪夫用的方法是硬凑,没错,就是硬凑!
通过公式间的不断转换,将bertrand 假设的成立的某一个,或者某几个充要条件,转换为引理一或者引理二的形式,在进行化简整合求解。
当然,程诺肯定不能这么做。
因为用这种求证方案的话,别说是程诺,就算是让希尔伯特来,恐怕证明步骤也不会比切比雪夫简单多少。因此,必须要转换思路。
但是究竟怎么一个转换法……
-->>(第 2/4 页)(本章未完,请点击下一页继续阅读)